

Features

- Low On-Resistance
- •Low Input Capacitance
- •Low Miller Charge
- •Low Input/Output Leakage

Application

- •Lithium-Ion Secondary Batteries
- Load Switch
- •DC-DC converters and Off-line UPS

Product Summary

Vds	40	V
R DS(on), TYP@ VGS=10 V	1.5	mΩ
l d	100	А

Absolute Maximum Ratings (T_A=25°C unless otherwise noted)

Parameter		Symbol	Value	Unit
Drain-Source Voltage		V _{DS}	40	V
Gate-Source Voltage		V _{GS}	±20	V
Durain Courseast Constinuous Note 1	T _c =25°C		100 ^{Notes}	А
Drain Current-Continuous	T _c =70°C	Ι _D	82 Notes	А
Drain Current-Pulsed Note 1		I _{DM}	400	А
Drain Current Continuous	T _A =25°C		31	А
Drain current-continuous	T _A =70°C	Ι _D	25	А
Avalanche Current		I _{AS}	63.5	А
Avalanche Energy, L=0.1mH		E _{AS}	201	mJ
	T _c =25°C	83		W
Maximum Dawar Dissinction	T _c =70°C	D D	53	W
Maximum Power Dissipation	T _A =25°C	PD	3.6	W
	T _A =70°C		2.3	W
Storage Temperature Range		T _{stg}	-55 to +150	°C
Operating Junction Temperature Range		T,	-55 to +150	°C

Thermal Resistance Ratings

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Maximum Junction-to-Ambient Note 2	$R_{\theta_{JA}}$	Steady State	-	-	35	°C/W
Maximum Junction-to-Case	$R_{\theta_{JC}}$	Steady State	-	-	1.5	°C/W

Shenzhen Jmwsemi Technology Co., Ltd.

Electrical Characteristics	(TJ=25 ℃, unless	otherwise noted)
-----------------------------------	------------------	------------------

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	40			V
Basian	Statia Drain Source On Besistence ²	V _{GS} =10V , I _D =20A		1.5	1.8	~
RDS(ON)		V _{GS} =4.5V , I _D =20A		2.0	2.6	1115.2
V _{GS(th)}	Gate Threshold Voltage	$V_{GS}=V_{DS}$, $I_{D}=250uA$	1.2	1.6	2.2	V
lace	Drain Source Lookage Current	V _{DS} =32V , V _{GS} =0V , TJ=25℃			1	
IDSS	Drain-Source Leakage Current	V_{DS} =32V , V_{GS} =0V , T_{J} =55°C			5	uA
lgss	Gate-Source Leakage Current	$V_{GS}=\pm20V$, $V_{DS}=0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =20A		53		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.0		Ω
Qg	Total Gate Charge (4.5V)			45		
Qgs	Gate-Source Charge	V_{DS} =15V , V_{GS} =10V , I_{D} =20A		12		nC
Q _{gd}	Gate-Drain Charge			18.5		
T _{d(on)}	Turn-On Delay Time			18.5		
Tr	Rise Time	V_{DD} =15V , V_{GS} =10V , R_G =3.3 Ω ,		9		
T _{d(off)}	Turn-Off Delay Time	ID=20A		58.5		ns
T _f	Fall Time			32		
Ciss	Input Capacitance			3972		
Coss	Output Capacitance	V _{DS} =20V , V _{GS} =0V , f=1MHz		1119		pF
Crss	Reverse Transfer Capacitance			82		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,6}	V _G =V _D =0V , Force Current			100	А
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , Is=1A , TJ=25℃			1.2	V

Note :

1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

2.The data tested by pulsed , pulse width $\,\leq\,$ 300us , duty cycle $\,\leq\,$ 2%

3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V, L=0.5mH, I_{AS} =40A

4.The power dissipation is limited by 150°C junction temperature

5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation. 6. Package limitation current is 100A.

JMN40N100BQ

Typical Characteristics

Fig.5 Normalized $V_{\text{GS}(\text{th})} \, \text{vs} \, \text{T}_{\text{J}}$

Fig.6 Normalized R_{DSON} vs T_J

JMN40N100BQ

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.11 Unclamped Inductive Switching Waveform

Ordering and Marking Information

Ordering Device No.	Marking	Package	Packing	Quantity
JMN40N100BQ-R	40N100B	DFN5*6-8	Tape&Reel	3000/Reel

PACKAGE	MARKING
DFN5*6-8	40N100B □□□□ → Date Code

DFN5x6-8 PACKAGE IN FORMATION

<u>Bottom View</u> [背视图]

Sumbol	Dimensions I	n Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
А	0.900	1.000	0.035	0.039
A3	0.254	IREF.	0.010	REF.
D	4.944	5.096	0.195	0.201
Е	5.974	6.126	0.235	0.241
D1	3.910	4.110	0.154	0.162
E1	3.375	3.575	0.133	0.141
D2	4.824	4.976	0.190	0.196
E2	5.674	5.826	0.223	0.229
k	1.190	1.390	0.047	0.055
b	0.350	0.450	0.014	0.018
е	1.270)TYP.	0.050	TYP.
L	0.559	0.711	0.022	0.028
L1	0.424	0.576	0.017	0.023
Н	0.574	0.726	0.023	0.029
θ	10°	12°	10°	12°

Disclaimer

The content specified herein is for the purpose of introducing JMW's products (hereinafter "Products"). The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

JMW does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of the Products or technical information described in this document.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). JMW shall bear no responsibility in any way for use of any of the Products for the above special purposes.

Although JMW endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a JMW product.

The content specified herein is subject to change for improvement without notice. When using a JMW product, be sure to obtain the latest specifications.