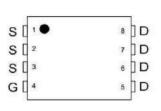
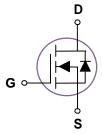


#### **Features**

- Advanced Trench MOS Technology
- Low Gate Charge
- Low R<sub>DS(ON)</sub>
- 100% EAS Guaranteed
- Green Device Available


### **Applications**


- Power Management in Desktop Computer or DC/DC Converters.
- Isolated DC/DC Converters in Telecom and Industrial.


# **Product Summary**



| $V_{DS}$                          | 100 | V         |
|-----------------------------------|-----|-----------|
| R <sub>DS(on),Typ</sub> @ Vgs=10V | 6.6 | $m\Omega$ |
| $I_{D}$                           | 68  | Α         |







### **Absolute Maximum Ratings**

| Symbol                               | Parameter                                     | Rating     | Units |
|--------------------------------------|-----------------------------------------------|------------|-------|
| V <sub>DS</sub>                      | Drain-Source Voltage                          | 100        | V     |
| V <sub>G</sub> S                     | Gate-Source Voltage                           | ±20        | V     |
| I⊳@Tc=25°C                           | Continuous Drain Current <sup>1,6</sup>       | 68         | Α     |
| I <sub>D</sub> @T <sub>C</sub> =70°C | Continuous Drain Current <sup>1,6</sup> 48    |            | Α     |
| I <sub>DM</sub>                      | Pulsed Drain Current <sup>2</sup> 140         |            | Α     |
| EAS                                  | Single Pulse Avalanche Energy <sup>3</sup> 61 |            | mJ    |
| las                                  | Avalanche Current 35                          |            | А     |
| P <sub>D</sub> @T <sub>C</sub> =25°C | Total Power Dissipation <sup>4</sup> 108      |            | W     |
| T <sub>STG</sub>                     | Storage Temperature Range -55 to 150          |            | °C    |
| TJ                                   | Operating Junction Temperature Range          | -55 to 150 | °C    |

#### **Thermal Data**

| Symbol            | Parameter                                           |  | Max. | Unit |
|-------------------|-----------------------------------------------------|--|------|------|
| Reja              | Thermal Resistance Junction-Ambient $^1(t \le 10s)$ |  | 25   | °C/W |
| Көја              | Thermal Resistance Junction-Ambient <sup>1</sup>    |  | 55   | °C/W |
| R <sub>θ</sub> JC | Thermal Resistance Junction-Case <sup>1</sup>       |  | 1.15 | °C/W |



### Electrical Characteristics (T<sub>J</sub>=25 °C, unless otherwise noted)

| Symbol              | Parameter                                      | Conditions                                                        | Min. | Тур. | Max. | Unit       |  |
|---------------------|------------------------------------------------|-------------------------------------------------------------------|------|------|------|------------|--|
| BV <sub>DSS</sub>   | Drain-Source Breakdown Voltage                 | V <sub>GS</sub> =0V , I <sub>D</sub> =250uA                       |      |      |      | V          |  |
| D- a (a.)           | Static Drain-Source On-Resistance <sup>2</sup> | V <sub>GS</sub> =10V , I <sub>D</sub> =13.5A                      |      | 6.6  | 8    | <b>~</b> 0 |  |
| R <sub>DS(ON)</sub> | Static Drain-Source On-Resistance <sup>2</sup> | V <sub>GS</sub> =4.5V , I <sub>D</sub> =11.5A                     |      | 8.7  | 10.5 | mΩ         |  |
| V <sub>GS(th)</sub> | Gate Threshold Voltage                         | V <sub>GS</sub> =V <sub>DS</sub> , I <sub>D</sub> =250uA          | 1.2  |      | 2.3  | V          |  |
| la a a              | Drain Source Leekage Current                   | V <sub>DS</sub> =80V , V <sub>GS</sub> =0V , T <sub>J</sub> =25°C |      |      | 1    |            |  |
| IDSS                | Drain-Source Leakage Current                   | V <sub>DS</sub> =80V , V <sub>GS</sub> =0V , T <sub>J</sub> =55°C |      |      | 5    | uA         |  |
| Igss                | Gate-Source Leakage Current                    | $V_{GS}$ =±20V , $V_{DS}$ =0V                                     |      |      | ±100 | nA         |  |
| gfs                 | Forward Transconductance                       | V <sub>DS</sub> =5V , I <sub>D</sub> =20A                         |      | 85   |      | S          |  |
| Qg                  | Total Gate Charge (10V)                        |                                                                   |      | 45   |      |            |  |
| Qg                  | Total Gate Charge (4.5V)                       | Vpc F0V Vcc 10V Ip 12 FA                                          |      | 19.3 |      | ~C         |  |
| Qgs                 | Gate-Source Charge                             | VDS=50V , VGS=10V , ID=13.5A                                      |      | 9.5  |      | nC         |  |
| Qgd                 | Gate-Drain Charge                              |                                                                   |      | 4.8  |      |            |  |
| Td(on)              | Turn-On Delay Time                             |                                                                   |      | 10   |      |            |  |
| Tr                  | Rise Time                                      | VDD=50V , VGS=10V , RG=3 $\Omega$ ,                               |      | 6.5  |      |            |  |
| Td(off)             | Turn-Off Delay Time                            | ID=13.5A                                                          |      | 45   |      | ns         |  |
| Tf                  | Fall Time                                      |                                                                   |      | 7.5  |      |            |  |
| Ciss                | Input Capacitance                              |                                                                   |      | 3320 |      |            |  |
| Coss                | Output Capacitance                             | VDS=50V , VGS=0V , f=1MHz                                         |      | 605  |      | pF         |  |
| Crss                | Reverse Transfer Capacitance                   |                                                                   |      | 20   |      |            |  |

#### **Diode Characteristics**

| Symbol          | Parameter                                  | Conditions                                                      | Min. | Тур. | Max. | Unit |
|-----------------|--------------------------------------------|-----------------------------------------------------------------|------|------|------|------|
| Is              | Continuous Source Current <sup>1,5,6</sup> | V <sub>G</sub> =V <sub>D</sub> =0V , Force Current              |      |      | 48   | Α    |
| V <sub>SD</sub> | Diode Forward Voltage <sup>2</sup>         | V <sub>GS</sub> =0V , I <sub>S</sub> =1A , T <sub>J</sub> =25°C |      |      | 1.1  | V    |
| t <sub>rr</sub> | Reverse Recovery Time                      | I <sub>F</sub> =13.5A , di/dt=100A/μs ,                         |      | 33   |      | nS   |
| Qrr             | Reverse Recovery Charge                    | T <sub>J</sub> =25°C                                            |      | 150  |      | nC   |

#### Note

- 1. The data tested by surface mounted on a 1 inch<sup>2</sup> FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width  $\leq$  300us , duty cycle  $\leq$  2%
- 3. The EAS data shows Max. rating . The test condition is  $V_{DD}$ =25V,  $V_{GS}$ =10V, L=0.3mH,  $I_{AS}$ =35A
- 4. The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as  $I_D$  and  $I_{DM}$ , in real applications, should be limited by total power dissipation.
- 6. The maximum current rating is package limited.



#### **Typical Characteristics**

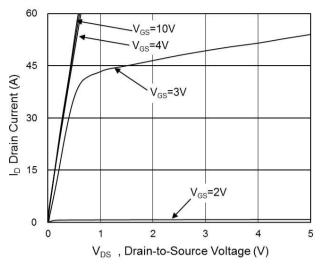



Fig.1 Typical Output Characteristics

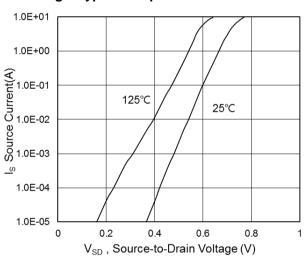



Fig.3 Source-Drain Forward Characteristics

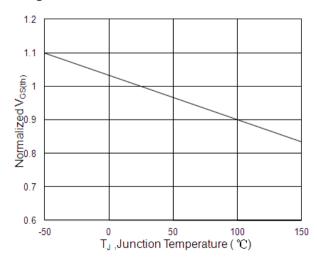



Fig.5 Normalized V<sub>GS(th)</sub> vs. T<sub>J</sub>

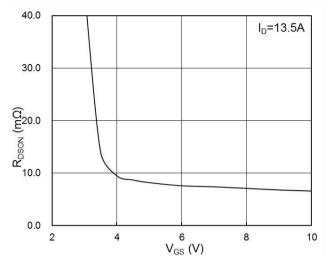



Fig.2 On-Resistance vs. G-S Voltage

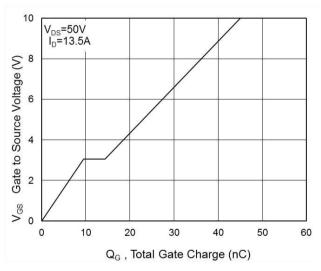



Fig.4 Gate-Charge Characteristics

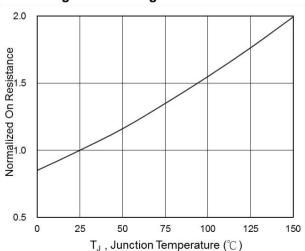
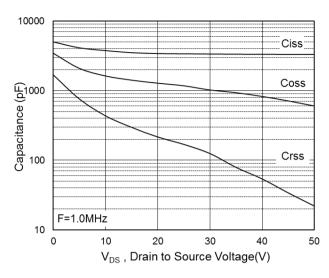




Fig.6 Normalized R<sub>DSON</sub> vs. T<sub>J</sub>





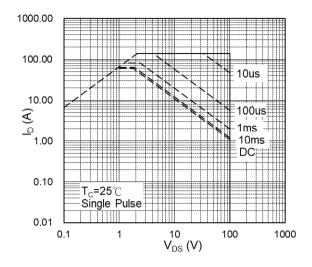



Fig.7 Capacitance

Fig.8 Safe Operating Area

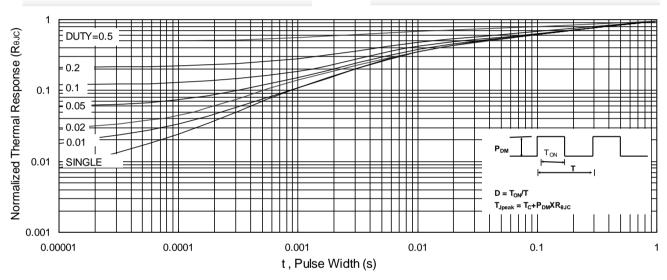



Fig.9 Normalized Maximum Transient Thermal Impedance

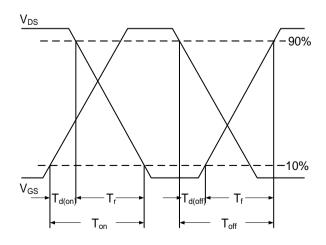



Fig.10 Switching Time Waveform

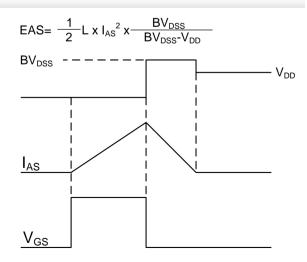
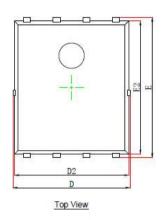
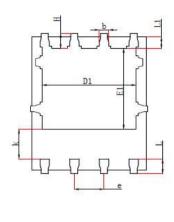


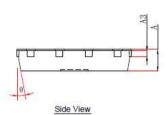

Fig.11 Unclamped Inductive Switching Waveform




# **Ordering and Marking Information**


| Ordering Device No. | Marking  | Package  | Packing   | Quantity |
|---------------------|----------|----------|-----------|----------|
| JMN100R066NQ-R      | 100R066N | DFN5x6-8 | Tape&Reel | 5000     |

| PACKAGE  | MARKING                 |
|----------|-------------------------|
| DFN5x6-8 | 100R066N □□□□ Date Code |




## **DFN5x6-8 PACKAGE IN FORMATION**





Bottom View



| Symbol   | Dimensions In Millimeters |       | Dimensions In Inches |       |  |
|----------|---------------------------|-------|----------------------|-------|--|
| Syllibol | Min.                      | Max.  | Min.                 | Max.  |  |
| Α        | 0.900                     | 1.000 | 0.035                | 0.039 |  |
| A3       | 0.254                     | REF.  | 0.010                | REF.  |  |
| D        | 4.944                     | 5.096 | 0.195                | 0.201 |  |
| E        | 5.974                     | 6.126 | 0.235                | 0.241 |  |
| D1       | 3.910                     | 4.110 | 0.154                | 0.162 |  |
| E1       | 3.375                     | 3.575 | 0.133                | 0.141 |  |
| D2       | 4.824                     | 4.976 | 0.190                | 0.196 |  |
| E2       | 5.674                     | 5.826 | 0.223                | 0.229 |  |
| k        | 1.190                     | 1.390 | 0.047                | 0.055 |  |
| b        | 0.350                     | 0.450 | 0.014                | 0.018 |  |
| е        | 1.270TYP.                 |       | 0.050TYP.            |       |  |
| L        | 0.559                     | 0.711 | 0.022                | 0.028 |  |
| L1       | 0.424                     | 0.576 | 0.017                | 0.023 |  |
| Н        | 0.574                     | 0.726 | 0.023                | 0.029 |  |
| θ        | 10°                       | 12°   | 10°                  | 12°   |  |



#### Disclaimer

The content specified herein is for the purpose of introducing JMW's products (hereinafter "Products"). The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

JMW does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of the Products or technical information described in this document.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). JMW shall bear no responsibility in any way for use of any of the Products for the above special purposes.

Although JMW endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a JMW product.

The content specified herein is subject to change for improvement without notice. When using a JMW product, be sure to obtain the latest specifications.