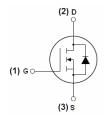


General Features

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply



TO-252

Product Summary

BVDSS	60	V
RDS(on),Typ.@ VGS=10 V	23	mΩ
ID	30	А

Absolute Maximum Ratings (Tc=25°C unless otherwise specified)

Symbol	Parameter		Max.	Units
V _{DSS}	Drain-Source Voltage		60	V
V _{GSS}	Gate-Source Voltage		±20	V
	Continuous Drain Current	T _C = 25°C	30	Α
I _D		T _C = 100°C	20	Α
I _{DM}	Pulsed Drain Current note1		120	Α
EAS	Single Pulsed Avalanche Energy note2		72	mJ
P _D	Power Dissipation	T _C = 25°C	55	W
R _{θJC}	Thermal Resistance, Junction to Case		2.7	°C/W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175	$^{\circ}$

Electrical Characteristics (T_J =25 $^{\circ}$ C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units		
Off Characteristic								
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250μA	60	-	-	V		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =48V, V _{GS} =0V,	-	-	1.0	μA		
I _{GSS}	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} =±20V	-	-	±100	nA		
On Charac	cteristics							
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0	1.6	2.5	V		
Б	Static Drain-Source on-Resistance	V _{GS} =10V, I _D =15A	-	23	36	0		
$R_{DS(on)}$	note3	V _{GS} =4.5V, I _D =10A		29	42	mΩ		
Dynamic (Characteristics							
C _{iss}	Input Capacitance	\/ -05\/ \/ -0\/	-	1562	-	pF		
Coss	Output Capacitance	V_{DS} =25V, V_{GS} =0V, f=1.0MHz	-	75.4	-	pF		
C_{rss}	Reverse Transfer Capacitance	I-1.0IVIMZ	-	66.8	-	pF		
Q_g	Total Gate Charge	\/ -20\/ -15\	•	25	-	nC		
Q_{gs}	Gate-Source Charge	V_{DS} =30V, I_{D} =15A, V_{GS} =10V	•	4.5	-	nC		
Q_{gd}	Gate-Drain("Miller") Charge	VGS-10V	•	6.5	-	nC		
Switching	Characteristics							
t _{d(on)}	Turn-on Delay Time		-	7.5	-	ns		
t _r	Turn-on Rise Time	$V_{DS} = 30V, I_{D} = 15A,$	-	21	-	ns		
t _{d(off)}	Turn-off Delay Time	$R_G\text{=}1.8\Omega,V_{GS}\text{=}10V$	-	16	-	ns		
t _f	Turn-off Fall Time		-	23.5	-	ns		
Drain-Sou	rce Diode Characteristics and Maximi	um Ratings						
Is	Maximum Continuous Drain to Source Diode Forward			-	30	А		
I _{SM}	Current Maximum Pulsed Drain to Source Diode Forward Current			_	120	Α		
V _{SD}	Drain to Source Diode Forward Voltage			-	1.2	V		
trr	Body Diode Reverse Recovery Time		-	29	-	ns		
Qrr	Body Diode Reverse Recovery Charge	I _F =15A, dI/dt=100A/μs	-	45	-	nC		

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

^{2.} EAS condition : TJ=25 $^{\circ}\text{C}$,VDD=30V,VG=10V,L=0.5mH,Rg=25 Ω

^{3.} Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%

Test Circuit

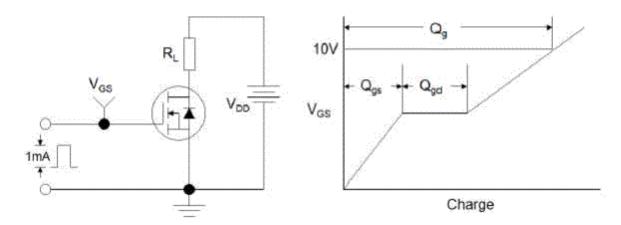


Figure1:Gate Charge Test Circuit & Waveform

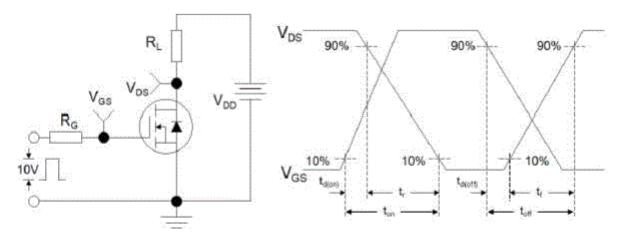


Figure 2: Resistive Switching Test Circuit & Waveforms

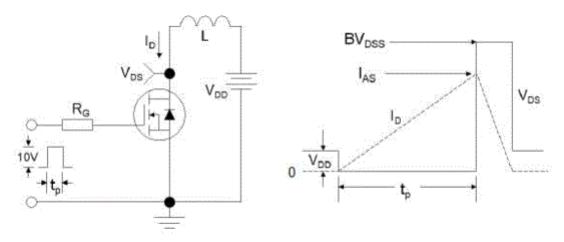


Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms

Typical Electrical and Thermal Characteristics (Curves)

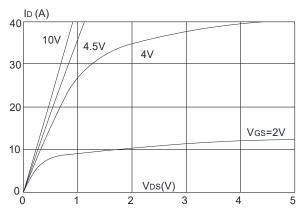


Figure1: Output Characteristics

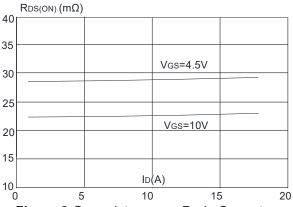


Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

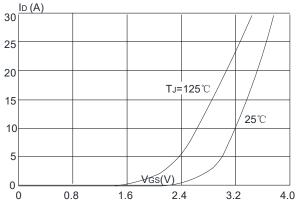


Figure 2: Typical Transfer Characteristics

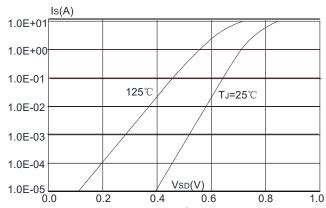


Figure 4: Body Diode Characteristics

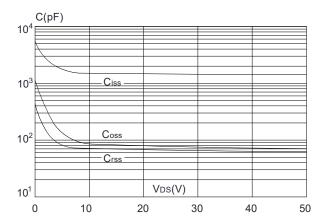
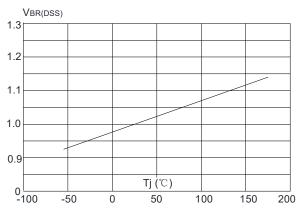
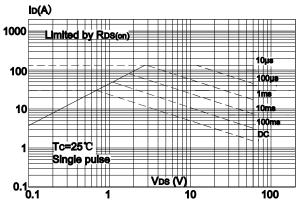
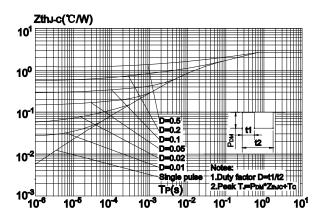
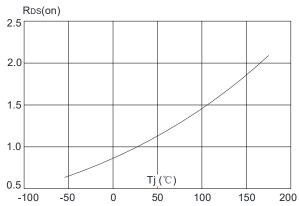



Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

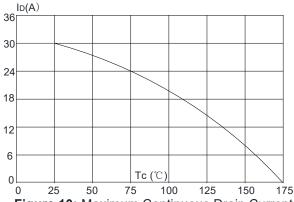

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 8: Normalized on Resistance vs. Junction Temperature

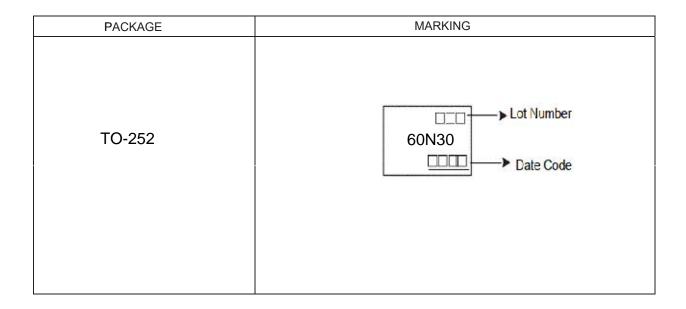
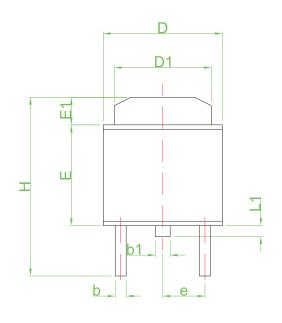
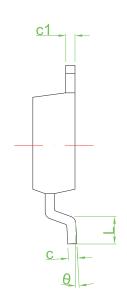
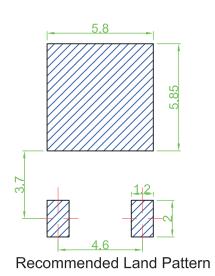
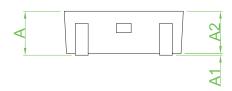


Figure 10: Maximum Continuous Drain Current vs. Case Temperature




Ordering and Marking Information


Ordering Device No.	Marking	Package	Packing	Quantity
JMD60N30KQ-R	60N30	TO-252	Tape&Reel	2500/Reel



Symbol	Dimensions in Millimeters		Dimensions in Inches	
	Min	Max	Min	Max
Α	2.25	2.65	0.089	0.104
A1	0.00	0.15	0.000	0.006
A2	2.20	2.40	0.087	0.094
b	0.50	0.70	0.020	0.028
b1	0.70	0.90	0.028	0.035
С	0.46	0.66	0.018	0.026
c1	0.46	0.66	0.018	0.026
D	6.30	6.70	0.248	0.264
D1	5.20	5.40	0.205	0.213
Е	5.30	5.70	0.209	0.224
E1	1.40	1.60	0.055	0.063
Н	9.40	9.90	0.370	0.390
е	2.30 TYP		0.09 TYP	
L	1.40	1.77	0.055	0.070
L1	0.50	0.70	0.020	0.028
θ	0°	8°	0°	8°

Disclaimer

The content specified herein is for the purpose of introducing JMW's products (hereinafter "Products"). The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

JMW does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of the Products or technical information described in this document.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). JMW shall bear no responsibility in any way for use of any of the Products for the above special purposes.

Although JMW endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a JMW product.

The content specified herein is subject to change for improvement without notice. When using a JMW product, be sure to obtain the latest specifications.